探伤的定义:探测金属材料或部件内部的裂纹或缺陷。常用的探伤方法有:X光射线探伤、超声波探伤、磁粉探伤、渗透探伤、涡流探伤、γ射线探伤等方法。物理探伤就是不产生化学变化的情况下进行无损探伤。
常用的探伤方法有:X光射线探伤、超声波探伤、磁粉探伤、涡流探伤、γ射线探伤、渗透探伤(荧光探伤、着色探伤)等物理探伤方法。
物理探伤就是不产生化学变化的情况下进行无损探伤。
检查范围编辑
1、焊缝表面缺陷检查。检查焊缝表面裂纹、未焊透及焊漏等焊接质量。
2、内腔检查。检查表面裂纹、起皮、拉线、划痕、凹坑、凸起、斑点、腐蚀等缺陷。
3、状态检查。当某些产品(如蜗轮泵、发动机等)工作后,按技术要求规定的项目进行内窥检测。
4、装配检查。当有要求和需要时,使用亚泰光电工业视频内窥镜对装配质量进行检查;装配或某一工序完成后,检查各零部组件装配位置是否符合图样或技术条件的要求;是否存在装配缺陷。
5、多余物检查。检查产品内腔残余内屑,外来物等多余物。 [2]
无损检测编辑
概念
无损探伤是在不损坏工件或原材料工作状态的前提下,对被检验部件的表面和内部质量进行检查的一种测试手段。
方法
常用的无损探伤方法有:X光射线探伤、超声波探伤、磁粉探伤、渗透探伤、涡流探伤、γ射线探伤、萤光探伤、着色探伤等方法。
目地
通过对产品内部缺陷进行检测对产品从以下方面进行改进
1、改进制造工艺;
2、降低制造成本;
3、提高产品的可靠性;
4、保证设备的安全运行。
原理
无损探伤检测是利用物质的声、光、磁和电等特性,在不损害或不影响被检测对象使用性能的前提下,检测被检对象中是否存在缺陷或不均匀性,给出缺陷大小,位置,性质和数量等信息。它与破坏性检测相比,无损检测有以下特点。第一是具有非破坏性,因为它在做检测时不会损害被检测对象的使用性能;第二具有全面性,由于检测是非破坏性,因此必要时可对被检测对象进行100%的全面检测,这是破坏性检测办不到的;第三具有全程性,破坏性检测一般只适用于对原材料进行检测,如机械工程中普遍采用的拉伸、压缩、弯曲等,破坏性检验都是针对制造用原材料进行的,对于成品和在用品,除非不准备让其继续服役,否则是不能进行破坏性检测的,而无损检测因不损坏被检测对象的使用性能。所以,它不仅可对制造用原材料,各中间工艺环节、直至最终产成品进行全程检测,也可对服役中的设备进行检测。 [3]
磁粉查伤编辑
原理
磁粉探伤是用来检测铁磁性材料表面和近表面缺陷的一种检测方法。当工件磁化时,若工件表面或近表面有缺陷存在,由于缺陷处的磁阻增大而产生漏磁,形成局部磁场,磁粉便在此处显示缺陷的形状和位置,从而判断缺陷的存在。
种类
1、按工件磁化方向的不同,可分为周向磁化法、纵向磁化法、复合磁化法和旋转磁化法。
2、按采用磁化电流的不同可分为:直流磁化法、半波直流磁化法、和交流磁化法。
3、按探伤所采用磁粉的配制不同,可分为干粉法和湿粉法。
缺陷
磁粉探伤设备简单、操作容易、检验迅速、具有较高的探伤灵敏度,可用来发现铁磁材料镍、钴及其合金、碳素钢及某些合金钢的表面或近表面的缺陷;它适于薄壁件或焊缝表面裂纹的检验,也能显露出一定深度和大小的未焊透缺陷;但难于发现气孔、夹碴及隐藏在焊缝深处的缺陷。
缺陷种类
1、各种工艺性质缺陷的磁痕;
2、材料夹渣带来的发纹磁痕;
3、夹渣、气孔带来的点状磁痕。 [2]
磁痕
磁痕产生原因
1、局部冷 作硬化,由材料导磁变化造成的磁痕聚集;2、两种不同材料的交界面处磁粉堆积;3、碳化物层组织偏析;4、零件截面尺寸的突变处磁痕;5、磁化电流过高,因金属流线造成的磁痕;6、由于工件表面不清洁或油污造成的斑点状磁痕。
缺陷磁痕显示记录
1、照 相。用照相摄影记录缺陷磁痕显示时,要尽可能拍摄工件的全貌和实际尺寸,也可以拍摄工作的某一特征部位,同时把刻度尺拍摄进去。
2、贴印。贴印是利用透明胶纸粘贴复印缺陷磁痕显示的方法。
3、磁痕探伤—橡胶铸型法 。用磁粉探伤-橡胶铸型镶嵌复制缺陷磁痕显示,直观,擦不掉并可长期保存。
4、录像。用录像记录缺陷磁痕显示的形状、大小和位置,同时应把刻度尺录摄进去。 [2]
漏磁原因
由于铁磁性材料的磁率远大于非铁磁材料的导磁率,根据工件被磁化后的磁通密度B=μH来分析,在工件的单位面积上穿过B根磁线,而在缺陷区域的单位面积 上不能容许B根磁力线通过,就迫使一部分磁力线挤到缺陷下面的材料里,其它磁力线不得不被迫逸出工件表面以外出形成漏磁,磁粉将被这样所引起的漏磁所吸引。
漏磁影响
1、缺陷的磁导率:缺陷的磁导率越小、则漏磁越强。
2、磁化磁场强度(磁化力)大小:磁化力越大、漏磁越强。
3、被检工件的形状和尺寸、缺陷的形状大小、埋藏深度等:当其他条件相同时,埋藏在表面下深度相同的气孔产生的漏磁要比横向裂纹所产生的漏磁要小。
检验规程
1、规程的适用范围;2、磁化方法(包括磁化规范、工件表面的准备);3、磁粉(包括粒度、颜色、磁悬液与荧光磁悬液的配制)。4、试片;5、技术操作;6、质量评定与检验记录。 [2]
操作要求
1、当工件直接通过电磁化时,要注意夹头间的接触不良、或用了太大的磁化电流引起打弧闪光,应戴防护眼镜,同时不应在有可能燃气体的场合使用;2、在连续使用湿法磁悬液时,皮肤上可涂防护膏;3、如用于水磁悬液,设备 须接地良好,以防触电;4、在用茧火磁粉时,所用紫外线必须经滤光器,以保护眼睛和皮肤。
其他
某些转动部件的剩磁将会吸引铁屑而使部件在转动中产生摩擦损坏,如轴类轴承等。某些零件的剩磁将会使附近的仪表指示失常。因此某些零件在磁粉探伤后要退磁处理。
磁粉探伤中的灵敏试片:使用灵敏试片目的在于检验磁粉和磁悬液的性能和连续法中确定试件表面有效磁场强度和方向以及操作方法是否正确等综合因素。 [2]
超声探伤编辑
基本原理
超声波探伤是利用超声能透入金属材料的深处,并由一截面进入另一截面时,在界面边缘发生反射的特点来检查零件缺陷的一种方法,当超声波束自零件表面由探头通至金属内部,遇到缺陷与零件底面时就分别发生反射波来,在萤光屏上形成脉冲波形,根据这些脉冲波形来判断缺陷位置和大小。
优缺点
超声波探伤比X射线探伤具有较高的探伤灵敏度、周期短、成本低、灵活方便、效率高,对人体无害等优点;缺点是对工作表面要求平滑、要求富有经验的检验人员才能辨别缺陷种类、对缺陷没有直观性;超声波探伤适合于厚度较大的零件检验。
主要特性
1、超声波在介质中传播时,在不同质界面上具有反射的特性,如遇到缺陷,缺陷的尺寸等于或大于超声波波长时,则超声波在缺陷上反射回来,探伤仪可将反射波显示出来;如缺陷的尺寸甚至小于波长时,声波将绕过射线而不能反射;
2、波声的方向性好,频率越高,方向性越好,以很窄的波束向介质中辐射,易于确定缺陷的位置。
3、超声波的传播能量大,如频率为1MHZ(100万赫兹)的超声波所传播的能量,相当于振幅相同而频率为1000HZ(赫兹)的声波的100万倍。
缺陷分类
在焊缝超声波探伤中一般把焊缝中的缺陷 分成三类:点状缺陷、线状缺陷、面状缺陷。
在分类中把长度小于10mm的缺陷叫做点状缺陷;一般不测长,小于10mm的缺陷按5mm计。把长度大于10mm的缺陷叫线状缺陷。把长度大于10mm高度大于3mm的缺陷叫面状缺陷。
穿透能力
X射线穿透物质的能力大小和射线本身的波长有关,波长越短(管电压越高),其穿透能力越大,称之为“硬”;反之则称为“软”。
消失的原因
1、近表表大缺陷;2、吸收性缺陷;3、倾斜大缺陷;4、氧化皮与钢板结合不好。
主要因素
1、显影时间;2、显影液温度;3、显影液的摇动;4、配方类型;5、老化程度。
使用
一、超声波探伤仪组成部分:主要有电路同步电路、发电路、接收电路、水平扫描电路、显示器和电源等部份组成。
二、超声波探头的主要作用
1、探头是一个电声换能器,并能将返回来的声波转换成电脉冲;
2、控制超声波的传播方向和能量集中的程度,当改变探 头入射 角或改变超声波的扩散角时,可使声波的主要能量按不同的角度射入介质内部或改变声波的指向性,提高分辨率;
3、实现波型转换;
4、控制工作频率;适用于不同的工作条件。
三、超声波试块的作用
超声波试块的作用是校验仪器和探头的性能,确定探伤起始灵敏度,校准扫描线性。
超声波探伤仪同步信号发生器的作用
同步电路产生同步脉冲信号,用以触发仪器各部分电路同时协调工作,它主要控制同步发射和同步扫描二部分电路。
四、超声波探伤中,超声波在介质中传播时引起衰减的原因
1、超声波的扩散传播距离增加,波束截面愈来愈大,单位面积上的能量减少。
2、材质衰减一是介质粘滞性引起的吸收;二是介质界面杂乱反射引起的散射。
加强超波探伤合录和报告工作
任何工件经过超声波探伤后,都必须出据检验报告以作为该工作质量好坏的凭证,一份正确的探伤报告,除建立可靠的探测方法和结果外,很大程度上取决于原始记录和最后出据的探伤报告是非常重要的,如果我们检查了工件不作记录也不出报告,那么探伤检查就毫无意义。
五、用超声波对饼形大锻件探伤,用底波调节探伤起始灵敏度对工作底面的要求
1、底面必须平行于探伤面;
2、底面必须平整并且有一定的光洁度。
六、CSK-ⅡA试块的主要作用
1、校验灵敏度;2、校准扫描线性。
七、影响照相灵敏度的主要因素
1、X光机的焦点大小;2、透照参数选择的合理性,主要参数有管电压、管电流、曝光时间和焦距大小;3、增感方式;4、选用胶片的合理性;5、暗室处理条件;6、散射的遮挡等。
八、超声波探伤选择探头K值三条原则
1、声束扫查到整个焊缝截面;
2、声束尽量垂直于主要缺陷;
3、有足够的灵敏度。
九、发射电路的主要作用
由同步电路输入的同步脉冲信号,触发发射电路工作,产生高频电脉冲信号激励晶片,产生高频振动,并在介质内产生超声波。
十、超声波探伤中,晶片表面和被探工件表面之间使用耦合剂的原因
晶片表面和被检工件表面之间的空气间隙,会使超声波完全反射,造成探伤结果不准确和无法探伤。
十一、JB1150-73标准中规定的判别缺陷的三种情况
1、无底波只有缺陷的多次反射波。
2、无底波只有多个紊乱的缺陷波。
3、缺陷波和底波同时存在。
十二、JB1150-73标准中规定的距离――波幅曲线的用途
距离――波幅曲线主要用于判定缺陷大小,给验收标准提供依据它是由判废线、定量线、测长线三条曲线组成;
判废线――判定缺陷的最大允许当量;
定量线――判定缺陷的大小、长度的控制线;测长线――探伤起始灵敏度控制线。
超声场:充满超声场能量的空间叫超声场。
十三、反映超声场特征的主要参数
反映超声场特征的重要物理量有声强、声压声阻抗、声束扩散角、近场和远场区。
十四、探伤仪最重要的性能指标
分辨力、动态范围、水平线性、垂直线性、灵敏度、信噪比。
十五、超声波探伤仪近显示方式
1、A型显示示波屏横坐标代表超声波传递播时间(或距离)纵坐标代表反射回波的高度;
2、B型显示示波屏横坐标代表超声波传递播时间(或距离),这类显示得到的是探头扫查深度方向的断面图;
3、C型显示仪器示波屏代表被检工件的投影面,这种显示能绘出缺陷的水平投影位置,但不能给出缺陷的埋藏深度。
十六、超声波焊缝探伤时为缺陷定位仪器时间扫描线的调整的方法:
有水平定位仪、垂直定位、声程定位三种方法。 [1]
着色探伤编辑
基本原理
着色(渗透)探伤的基本原理是利用毛细现象使渗透液渗入缺陷,经清洗使表面渗透液去除,而缺陷中的渗透残留,再利用显像剂的毛细管作用吸附出缺陷中残留渗透液而达到检验缺陷的目的。
主要因素
1、渗透剂的性能的影响;2、乳化剂的乳化效果的影响;3、显像剂性能的影响;4、操作方法的影响;5、缺陷本身性质的影响。
危害与防护
一定会有伤害,操作时需要穿防护衣,防护手套。距离一般不可以避免的可以操控到的位置尽可能的远一些好。工业无损探伤会产生辐射,辐射量大了可能会不育,甚至会致癌。
工业防辐射要做到三点:
(1)距离防护,工作时要远离辐射源。
(2)时间防护,不要长时间工作。
(3)屏蔽防护,工作区域要有有效的屏蔽装置。
其他
1)胶片洗冲程序
显影、停影、定影、水洗、干燥。
2)斜探头折射角β的正确值
斜探头折射角的正确值称为K值,它等于斜探头λ射点至反射点的水平距离和相应深度的比值。
3)局部无损探伤检查的焊缝中发现有不允许的缺陷
应在缺陷的延长方向或可疑部位作补充射线探伤。补充检查后对焊缝质量仍然有怀疑对该焊缝应全部探伤。
4)干粉法与湿粉法检验的主要优缺点
干粉法检验对近表面缺陷的检出能力高,特别适于大面积或野外探伤;湿粉法检验对表面细小缺陷检出能力高,特别适于不规则形状的小型零件的批量探伤。 [4]
X射线查伤编辑
原理
x射线的特性 X射线是一种波长很短的电磁波,是一种光子,波长为10-6~10-8cm。
特点
穿透性 x射线能穿透一般可见光所不能透过的物质。其穿透能力的强弱,与x射线的波长以及被穿透物质的密度和厚度有关。x射线波长愈短,穿透力就愈大;密度愈低,厚度愈薄,则x射线愈易穿透。在实际工作中,通过球管的电压伏值(kV)的大小来确定x射线的穿透性(即x射线的质),而以单位时间内通过x射线的电流 (mA)与时间的乘积代表x射线的量。
电离作用 x射线或其它射线(例如γ射线)通过物质被吸收时,可使组成物质的分子分解成为正负离子,称为电离作用,离子的多少和物质吸收的X射线量成正比。通过空气或其它物质产生电离作用,利用仪表测量电离的程度就可以计算x射线的量。检测设备正是由此来实现对零件探伤检测的。X射线还有其他作用,如感光、荧光作用等。
影像形成原理
X线影像形成的基本原理,是由于X线的特性和零件的致密度与厚度之差异所致。 [5]
声发射探伤编辑
声发射技术原理:
从声发射源发射的弹性波最终传播到达材料的表面,引起可以用声发射传感器探测的表面位移,这些探测器将材料的机械振动转换为电信号,然后再被放大、处理和记录。
通过对所得到的数据进行分析,最终达到以下目的:
①确定声发射源的部位;
②分析声发射源的性质;
③确定声发射发生的时间或载荷;
④评定声发射源的严重性。
声发射技术的优点介绍:
(1)声发射是一种动态检验方法,声发射探测到的能量来自被测试物体本身,而不是象超声或射线探伤方法一样由无损检测仪器提供;
(2)在一次试验过程中,声发射检验能够整体探测和评价整个结构中活性缺陷的状态;
(3)由于对构件的几何形状不敏感,而适于检测其它方法受到限制的形状复杂的构件。
(4)可提供活性缺陷随载荷、时间、温度等外变量而变化的实时或连续信息,因而适用于工业过程在线监控及早期或临近破坏预报;
(5)由于对被检件的接近要求不高,而适于其它方法难于或不能接近环境下的检测,如高低温、核辐射、易燃、易爆及极毒等环境。
声发射技术的局限性介绍:
(1) 声发射特性对材料敏感,又易受到机电噪声的干扰,对数据的正确解释要有更为丰富的数据库和现场检测经验;
(2) 声发射检测一般需要适当的加载程序。多数情况下,可利用现成的加载条件,但还需要特作准备;
(3)由于声发射的不可逆性,实验过程的声发射信号不可能通过多次加载重复获得,因此,每次检测过程的信号获取是非常宝贵的,不可因人为疏忽而造成宝贵数据的丢失。